
Physics H7C Fall 1999 Solutions to Problem Set 3 Derek Kimball

“Niels Bohr (not for the first time) was ready to abandon the law of conservation
of energy. It is interesting to note that Bohr was an outspoken critic of Einstein’s
light quantum (prior to 1924), that he discouraged Dirac’s work on the relativis-
tic electron theory (telling him, incorrectly, that Klein and Gordon had already
succeeded), that he opposed Pauli’s introduction of the neutrino, that he ridiculed
Yukawa’s theory of the meson, and that he disparaged Feynman’s approach to quan-
tum electrodynamics.”

- Prof. David Griffiths, Reed College, excerpted from Introduction to Elementary
Particles

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

An interesting (to me) point concerning the physical meaning of orthogonal po-
larization was raised after discussion section the other day. Fowles says that two
waves E1 and E2 whose complex electric field amplitudes satisfy:

E1 · E∗
2 = 0 (1)

are orthogonally polarized.

For linear polarization, there is a simple geometric analogy. Linearly polarized
light (e.g., in the x̂ direction) is orthogonal to light with a perpendicular linear
polarization (e.g., in the ŷ direction). So no light will get through two linear
polarizers which are “orthogonal” in the Euclidean geometry sense. However,
this picture breaks down for more complicated polarization states, e.g. circular
polarizations. For example, two circular polarizations whose electric fields are
always at right angles to each other are not orthogonal!

Orthogonality for polarization states can be understood using notions from lin-
ear algebra. In this sense the complex vector space of polarization states can be
spanned by two linearly independent, complex vectors - any two linearly indepen-
dent complex vectors are said to be orthogonal. This is what Fowles means when
he says two polarization states are orthogonal.

Another interesting question raised after discussion section, although it is a bit
beyond the scope of the course, was whether or not a free-falling (in a gravitational
field) charged particle radiates. You would expect that it might not based on the
equivalence principle, which basically states that a free-falling frame is equivalent
to an inertial frame. However, if you observe the charge from the surface of some
planet, you would see a charged particle undergoing acceleration. This is a little
funny, since you would expect that the charge either loses energy or it doesn’t...

After thinking about it a little and consulting some wise general relativity texts
(e.g., Wald’s General Relativity or Misner, Thorne and Wheeler’s Gravitation),

I believe that the answer is frame dependent (as is the case for most relativity
paradoxes). If you’re free-falling with the particle, you don’t see any radiation.
If the charge is accelerating with respect to you, then you see radiation. This
can be shown with the general relativistic field transformations. What about
energy conservation? Well, I’m no Niels Bohr, so I think that if you change your
acceleration into the frame of the particle, everything works out... but to prove
this seems a bit complicated... anyhow, good stuff to think about, keep up the
great work! Thanks!

Problem 1

First we’ll calculate the electromagnetic energy radiated Prad∆t during the decel-
eration lasting for ∆t = v/a, which is given by:

Prad∆t =
1

4πε0

2
3

e2av

c3
. (2)

The electron’s initial kinetic energy K is just:

K =
1
2
mv2, (3)

and the ratio Prad∆t/K is given by:

Prad∆t

K
=

4
3

(
1

4πε0

e2

mc2

)( a

cv

)
. (4)

The distance d traveled by light in ∆t is cv/a, and the classical radius of the elec-
tron r0 is given by the formula in the problem set: r0 ≡ e2/

(
4πε0mc2

)
. Therefore:

Prad∆t

K
=

4
3

(r0

d

)
. (5)

Here’s an interesting fact that might help you remember some important lengths
in physics:

One of the most important constants in physics is the fine-structure constant α,
which sets the strength scale for the electromagnetic force:

α =
e2

�c
≈ 1

137
, (6)

where e is in CGS units. You may recognize the upper division physics course,
Physics α−1.
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You can guess the the classical radius of the electron by setting the rest energy of
the electron equal to the potential energy stored in a spherical shell of radius r0

with charge e on the surface.

mc2 =
e2

r0
. (7)

In a few weeks, you’ll learn about Compton scattering (photon-electron scattering).
The Compton wavelength of the electron is given by r0/α. The Bohr radius, the
radius of an electron’s orbit in the hydrogen atom, is given by r0/α

2.

Problem 2

The electron oscillates sinusoidally with the acceleration given by:

a =
|e|E0

m
sin ωt. (8)

The power Prad radiated is given by:

Prad =
1

4πε0

2
3

e4

c3

E2
0

m2
sin2 ωt, (9)

and of course if we average over many cycles...

〈Prad〉 =
1

4πε0

1
3

e4

c3

E2
0

m2
. (10)

Next if we divide this result by the average power density 〈U〉 in the incident wave
we get the scattering cross section σ:

σ =
1

6πε20

e4

m2c4
. (11)

You might notice that σ = (8/3)πr2
0, r0 being the classical electron radius from

problem 1...

Problem 3

We transform to a comoving inertial frame F ′ in which the electron is temporarily
at rest. The electric and magnetic fields in F ′ are given by:

�E′
⊥ = γ

(
�E⊥ + c�β × �B

)
�B′
⊥ = γ

(
�B⊥ − 1

c
�β × �E

)
�E′

�
= �E�

�B′
�

= �B�

. (12)

The force on the electron is the Lorentz force given by:

�F = e
(

�E + �v × �B
)
, (13)

but in the comoving frame F ′ the electron’s velocity is zero. Since in the lab frame
F the electric field is zero, the force acting on the electron in F ′ is:

F = eE′
⊥ = eγcβB. (14)

Thus, the acceleration a is:

a =
eγcβB

m
(15)

This acceleration can be used in our old pal which describes the power radiated:

P ′
rad =

1
4πε0

2
3

e2a2

c3
, (16)

which gives us:

P ′
rad =

1
4πε0

2
3

e4γ2β2B2

m2c
. (17)

When we transform back to frame F , the energy transforms as ∆E′ → γ∆E
and the time transforms as ∆t′ → γ∆t. Therefore, since power is just ∆E/∆t,
P ′

rad = Prad.
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Problem 4

Fowles 2.4

For this problem we employ the complex exponential form of the wave functions
for �E and �H:

�E = Re
(

�E0e
i(k·r−ωt)

)
�H = Re

(
�H0e

i(k·r−ωt)
)
. (18)

The Poynting vector is given by:

�S = �E × �H. (19)

Using the expressions from Eq. (18), we find the Poynting vector is:

�S = Re
(

�E0e
i(k·r−ωt)

)
× Re

(
�H0e

i(k·r−ωt)
)

(20)

We can expand the exponentials in terms of sines and cosines and find the real
parts:

�S =
(
Re( �E0) cos (k · r − ωt) − Im( �E0) sin (k · r − ωt)

)
×

(
Re( �H0) cos (k · r − ωt) − Im( �E0) sin (k · r − ωt)

)
. (21)

If we expand this expression and time average (i.e. we set sin2 (k · r − ωt) and
cos2 (k · r − ωt) equal to 1

2 and sin (k · r − ωt) cos (k · r − ωt) equal to 0), then we
get:

〈�S〉 =
1
2

(
Re( �E0) × Re( �H0) + Im( �E0) × Im( �H0)

)
. (22)

This expression, by inspection, is equivalent to:

〈�S〉 =
1
2
Re

(
�E0 × �H∗

0

)
, (23)

which verifies the claim.

Problem 5

Fowles 2.7

This is pretty straightforward. Here’s the prescription:

Given the electric field of the wave, �E, in the form:

�E = E0

(
î + ĵbeiθ

)
ei(k·r−ωt), (24)

the Jones vector is given by: [
Ex

Ey

]
= E0

[
1

beiθ

]
. (25)

You can normalize the Jones vector if you want, but if you didn’t feel like doing
that in this problem that’s okay too. So pretty much we can just write down the
answers, here they are:

(a)

[
Ex

Ey

]
=

√
2E0

[
1√
2

1√
2

]
. (26)

(b)

[
Ex

Ey

]
=

√
5E0

[
1√
5

2√
5

]
. (27)

(c)

[
Ex

Ey

]
=

√
2E0

[
1√
2−i√
2

]
. (28)

(d)

[
Ex

Ey

]
= 2E0

[ √
2

2
1+i
2

]
. (29)
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Problem 6

Fowles 2.10

We’ll start with an arbitrary polarization:[
Ex

Ey

]
=

[
a

beiθ

]
. (30)

Now we’ll send it through a linear polarizer. Let’s orient the linear polarizer at
45o, so our resultant polarization is given by:[

Ex

Ey

]
=

1
2

[
1 1
1 1

] [
a

beiθ

]
=

1
2

[
a + beiθ

a + beiθ

]
=

a + beiθ

2

[
1
1

]
(31)

We can ignore the amplitude out front. Now we’ll sent it through a quarter-wave
plate with the fast axis horizontal.[

Ex

Ey

]
=

[
1 0
0 i

] [
1
1

]
=

[
1
i

]
, (32)

which is indeed circular polarization! What happens if we change the order?[
Ex

Ey

]
=

1
2

[
1 1
1 1

] [
1 0
0 i

] [
a

beiθ

]
=

a + beiθ

2

[
1
1

]
, (33)

which is linear polarization. So circular polarized light is created only by placing
the optical elements in the proper order.

Problem 7

(a)

For this problem, we can use the technique for changing the basis of a matrix
operator that we employed in the first problem set to find Lorentz transforms in
rotated frames (see PS1 solutions, problem 2). Namely,

M′ = R−1MR. (34)

where M is the Jones matrix and R is the appropriate rotation matrix. For a linear
polarizer with transmission axis at an arbitrary angle φ:

M =
[

cos φ − sin φ
sin φ cos φ

] [
1 0
0 0

] [
cos φ sin φ
− sin φ cos φ

]
=

[
cos2 φ sin φ cos φ

sin φ cos φ sin2 φ

]
.

(35)

(b)

A quick way to check if the matrix is unitary is to multiply M by
(
MT

)∗ and see
if it equals the identity matrix:

M · (MT
)∗

=
[

cos2 φ sin φ cos φ
sin φ cos φ sin2 φ

] [
cos2 φ sin φ cos φ

sin φ cos φ sin2 φ

]

=
[

cos2 φ sin φ cos φ
sin φ cos φ sin2 φ

]
. (36)

Well that’s not the identity matrix, so the Jones matrix of a linear polarizer is not
unitary.

Problem 8

(a)

The Jones matrix for the ideal wave plate is:

M =
[

eiδ/2 0
0 e−iδ/2

]
. (37)

(b)

For the general case we just do the matrix multiplication as in problem 7 (a):

M′ =
[

cos φ − sin φ
sin φ cos φ

] [
eiδ/2 0

0 e−iδ/2

] [
cos φ sin φ
− sin φ cos φ

]

= e−iδ/2

[
eiδ cos2 φ − sin2 φ

(
1 + eiδ

)
sin φ cos φ

−(
1 + eiδ

)
sin φ cos φ cos2 φ − eiδ sin2 φ

]
. (38)

(c)

Now we check for unitarity just as in problem 7 (b):

M′ · (M′)T∗ = e−iδ/2

[
eiδ cos2 φ − sin2 φ

(
1 + eiδ

)
sin φ cos φ

−(
1 + eiδ

)
sin φ cos φ cos2 φ − eiδ sin2 φ

]
·

eiδ/2

[
e−iδ cos2 φ − sin2 φ

(
1 + e−iδ

)
sin φ cos φ

−(
1 + e−iδ

)
sin φ cos φ cos2 φ − e−iδ sin2 φ

]
=

[
1 0
0 1

]
(39)

So the Jones vector for the waveplate is a unitary operator!

Bye for now!
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